Skip to main content

Blog

Learn About Our Meetup

5000+ Members

MEETUPS

LEARN, CONNECT, SHARE

Join our meetup, learn, connect, share, and get to know your Toronto AI community. 

JOB POSTINGS

INDEED POSTINGS

Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.

CONTACT

CONNECT WITH US

Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

[P] Comparing 7 Deep Dependency parsing models using Tensorflow

Trained on CONLL English Dependency, https://github.com/UniversalDependencies/UD_English-EWT. Train set to train, dev and test sets to test.

Stackpointer and Biaffine-attention originally from https://github.com/XuezheMax/NeuroNLP2 written in Pytorch.

Accuracy based on arc, types and root accuracies after 15 epochs only.

  1. Bidirectional RNN + CRF + Biaffine, arc accuracy 70.48%, types accuracy 65.18%, root accuracy 66.4%
  2. Bidirectional RNN + Bahdanau + CRF + Biaffine, arc accuracy 70.82%, types accuracy 65.33%, root accuracy 66.77%
  3. Bidirectional RNN + Luong + CRF + Biaffine, arc accuracy 71.22%, types accuracy 65.73%, root accuracy 67.23%
  4. BERT Base + CRF + Biaffine, arc accuracy 64.30%, types accuracy 62.89%, root accuracy 74.19%
  5. Bidirectional RNN + Biaffine Attention + Cross Entropy, arc accuracy 72.42%, types accuracy 63.53%, root accuracy 68.51%
  6. BERT Base + Biaffine Attention + Cross Entropy, arc accuracy 72.85%, types accuracy 67.11%, root accuracy 73.93%
  7. Bidirectional RNN + Stackpointer, arc accuracy 61.88%, types accuracy 48.20%, root accuracy 89.39%

Link to repository, https://github.com/huseinzol05/NLP-Models-Tensorflow#dependency-parser

Discussion

  1. Based on 15 epochs only.
  2. No dropout here, feel free to do it.
  3. BERT cannot implemented in Stackpointer model, stack pointer model required each decoder step.

submitted by /u/huseinzol05
[link] [comments]