Learn About Our Meetup

4500+ Members

[R] New Graph Classification Data Sets

Graph classification has been popular recently, which led to rich development of Graph Kernels and Graph Neural Networks. All papers more or less verify the results on 10-15 benchmark data sets. We found that these data sets (and 40 others) have a lot of isomorphic graphs which leads to (1) train-to-test leakage and (2) incorrect validation comparison. Absurdly, some isomorphic graphs have different classification labels, making it impossible to classify correctly such instances. We explain the reasons why these isomorphic instances appear in data sets in the first place (e.g. meta-data, sizes of graphs, or origin of a data set) and open-source new clean data sets, both in GitHub and in PyTorch-Geometric.

Here is a link to the paper:

Here is more informal blog post about findings.

submitted by /u/nd7141
[link] [comments]

Next Meetup




Plug yourself into AI and don't miss a beat