Join our meetup, learn, connect, share, and get to know your Toronto AI community.
Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.
Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.
In this work we have evaluated various methods to predict when there is permeate breakthrough in a biochemical production process. An autoencoder model seems quite promising, but should be combined with conventional statistic process control metrics to increase its robustness.
Likewise, the Exponential moving average (EMA) and Long short-term memory (LSTM) provide different outcomes. The EMA smooths the time series data and gives the trend over time. This combined with the LSTM enables us to make future predictions on the permeate values in the future.
The entire code for this project can be found in my github repo.
submitted by /u/PriceTT
[link] [comments]