Blog

Learn About Our Meetup

5000+ Members

MEETUPS

LEARN, CONNECT, SHARE

Join our meetup, learn, connect, share, and get to know your Toronto AI community. 

JOB POSTINGS

INDEED POSTINGS

Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.

CONTACT

CONNECT WITH US

Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

[D] Anyone think that the evaluation of the meta-learning approaches for few-shot classification is not very reasonable?

Meta-learning for few-shot classification (N-way-K-shot) usually uses the same number of query examples for both training and testing. For example, in a 5-way-1-shot classification task over the miniImageNet dataset, during the training phase, there are 1 example per class in the support set and 15 examples per class in the query set. During the testing phase, it’s the same. But to be realistic, shouldn’t we use more query examples for evaluation? Of course I know the results will not be as good-looking as current ones. Moreover, the setting of the ways & shots during the training phase seems not rigorous, either.

submitted by /u/Robin_go
[link] [comments]

Next Meetup

 

Days
:
Hours
:
Minutes
:
Seconds

 

Plug yourself into AI and don't miss a beat

 


Toronto AI is a social and collaborative hub to unite AI innovators of Toronto and surrounding areas. We explore AI technologies in digital art and music, healthcare, marketing, fintech, vr, robotics and more. Toronto AI was founded by Dave MacDonald and Patrick O'Mara.