Skip to main content


Learn About Our Meetup

5000+ Members



Join our meetup, learn, connect, share, and get to know your Toronto AI community. 



Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.



Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

Workday Data Science Interviews

In 2012, Workday launched a successful IPO valued at $9.5 billion.

Workday is a leading provider of enterprise cloud applications for finance and human resources. It was founded in 2005. Workday delivers financial management, human capital management, planning, and analytics applications designed for the world’s largest companies, educational institutions, and government agencies. In January 2018, Workday announced that it acquired SkipFlag, makers of an AI knowledge base that builds itself from a company’s internal communications. In July 2018, they acquired to boost augmented analytics. These two acquisitions point towards an increased investment in the data science domain.


Interview Process

The process starts with a phone screen with a recruiter. That is followed by a technical phone interview with hiring manager. The questions are typical machine learning and data science questions — with some data structures and algorithms questions. If both of those go well, there is an onsite interview.
The onsite consists of five interviews with different team members, hiring managers, and executives. The questions are about programming skills, algorithmic skills, data structures, and anything related to machine learning techniques.

Important Reading


Data Science Related Interview Questions

  • Given data from the world bank, provide insights on a small CSV file.
  • Write a C++ class to perform garbage collection.
  • Given 2 sorted arrays, merge them into 1 array. If the first array has enough space for 2, how do you merge the 2 without using extra space?
  • Given a huge collection of books, how would you tag each book based on genre?
  • Compare the classification algorithms
  • Logistic regression vs neural network
  • Integer array — get pairs of values that equal a certain target value.
  • How would you improve the complexity of a list merging algorithm from quadratic to linear?
  • What is p-value?
  • Perform a tweet correlation analysis and tweet prediction for the given dataset.

Reflecting on the Questions

The questions are highly technical in nature. They point towards a very strong requirement of having Data Scientists who can code very well. Workday is the employee directory in the cloud and there are interesting things that could be done based on data. A good inclination of a Data Scientists in coding can surely land a job with Workday!

Subscribe to our Acing Data Science newsletter. A new course to ace data science interviews is coming soon. Sign up below to join the waitlist!

Acing Data Science Interviews

Thanks for reading! 😊 If you enjoyed it, test how many times can you hit 👏 in 5 seconds. It’s great cardio for your fingers AND will help other people see the story.

Workday Data Science Interviews was originally published in Acing AI on Medium, where people are continuing the conversation by highlighting and responding to this story.