Join our meetup, learn, connect, share, and get to know your Toronto AI community.
Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.
Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.
Consider I have a lot of measurements, some of them are real, some of them are noise. I can build a hypothesis by combining measuremens to a sequence. There are a lot of possible hypotheses considering that two sequences can combine a different subset of all measurements (which means two sequences of measurements can have different amount of measurements). Each measurement also comes with a probability.
My question is: what would be a good/proper way of finding the best/most likely hypothesis here?
Example: imagine the sequence of measurements with probabilities [0.8, 0.8, 0.8] and [0.9, 0.95]. Which of these 2 hypotheses would you pick over the other?
submitted by /u/DeepDeeperRIPgradien
[link] [comments]