Skip to main content


Learn About Our Meetup

5000+ Members



Join our meetup, learn, connect, share, and get to know your Toronto AI community. 



Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.



Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

[P] Learning to play Tetris, again

[P] Learning to play Tetris, again

Hi all,

This is a follow-up to my original post of using MCTS and TD learning to solve the Tetris environment.

As I have made quite some progress, I think it would be interesting to share my latest results with you.

Here is a video showcasing the evolution of the new agent.

And here is the average scores (according to the guideline) and line clears at each iteration

where each iteration consists of 50 games of normal play (500 simulations per move (SPM), used for training) and 1 game of benchmark play (1000 SPM). The games shown in the video are the benchmark plays at each iteration.

The previous agent was only able to achieve about ~15 line clears after 800 games, with this new agent, however, we can achieve ~1.3k line clears at 750 games (iteration 15) which is about 100 times better than the previous one. Furthermore, the maximum line clear was 5678 (what a coincidence) in one of the games at iteration 15, about 4 times higher than the maximum achieved by the previous agent. Also, note that the new agent was trained using the raw score which is noisier and harder than training on the number of line clears.

As a not-so-fair comparison, I found an old paper using a complex handcrafted reward function along with TD learning was able to achieve ~8k line clears after ~70k games. Personally, I believe my agent could achieve a similar number with significantly less games since the scores was increasing super-exponentially in the later iterations. Unfortunately, the agent was starting to generate more than 8GB of data which is larger than the RAM of my potato so I had to terminate it there.

If you are interested, more description and the code can be found at my github repository.

Thanks for reading, let me know what you think!

submitted by /u/b0red1337
[link] [comments]