Blog

Learn About Our Meetup

5000+ Members

MEETUPS

LEARN, CONNECT, SHARE

Join our meetup, learn, connect, share, and get to know your Toronto AI community. 

JOB POSTINGS

INDEED POSTINGS

Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.

CONTACT

CONNECT WITH US

Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

[D] [NLP] Reconstructing input sentence of VAE instead of using auto-regressive

I am training a VAE on a NLP task, I found that the reconstruction part is really memory consuming. Just wonder if there is any other method to reconstruct the input but without using auto-regressive.

I have thought about 1. Negative sampling, like what word2vec does, then we don’t need to normalize on the whole vocabulary 2. Bag of words, just simply averaging the word vectors and then use it as sentence vector, then reconstruct this sentence vector by minimizing MSE. Since this method reconstruct only one vector for one sentence instead every words, this will be fast and memory friendly. But I am not sure if this can work, or if the neural network will learn some trivial representation instead, e.g. all zeros

Any other idea? Thanks~

submitted by /u/speedcell4
[link] [comments]

Next Meetup

 

Days
:
Hours
:
Minutes
:
Seconds

 

Plug yourself into AI and don't miss a beat

 


Toronto AI is a social and collaborative hub to unite AI innovators of Toronto and surrounding areas. We explore AI technologies in digital art and music, healthcare, marketing, fintech, vr, robotics and more. Toronto AI was founded by Dave MacDonald and Patrick O'Mara.