Join our meetup, learn, connect, share, and get to know your Toronto AI community.
Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.
Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.
By disentangling methods I mean methods under the VAE framework such as factor-VAE and beta-TCVAE which explicitly regularize the total correlation of the aggregate posterior q(z) approx 1/N sum_n q(z | x_n).
Locatello et. al. in their large-scale study of disentanglement methods (1) show empirical evidence to demonstrate that the dimensions of the mean representation of q(z|x) (usually used for representation) are correlated, but it seems that the dimensions of the mean representation by definition are independent if we use a factorial distribution to represent the posterior such as a diagonal-covariance Gaussian. Also, averaging this representation over the data distribution should also be factorial if we assume that the aggregate posterior q(z) is factorial (proof in 2), so I think the claim in 1 is wrong.
submitted by /u/Tonic_Section
[link] [comments]