Blog

Learn About Our Meetup

5000+ Members

MEETUPS

LEARN, CONNECT, SHARE

Join our meetup, learn, connect, share, and get to know your Toronto AI community. 

JOB POSTINGS

INDEED POSTINGS

Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.

CONTACT

CONNECT WITH US

Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

[Discussion] – What to do if your model ignores the input and learns the labels?

Hi everyone,

I’m working on this time-series regression problem and I’ve already gone through the following stages:

  • prepared different datasets by adding first only the series itself, then moving averages, then sentiment data, etc;
  • trained benchmarks: persistent models, linear regressions, ARIMA, …
  • tried a variety of different deep learning architectures (MLPs, resnets, wavenets, lstm, etc.)

So, what happens is that no matter (i) how the dataset is built and (ii) how complex or fancy the architecture is but the model always end up ignoring the input and predicting as output at timestep t the input a timestep t-1, which is called a persistent model in literature and (it’s one of the benchmarks)

TL; DR:

Time series framing problem: DL models (of several architectures) end up totally ignoring the input and learn to give always the same prediction: ŷ(t) = x(t-1)

Q: How to address this issue? Is there a way to penalise this behaviour during the training?

submitted by /u/Synchro–
[link] [comments]

Next Meetup

 

Days
:
Hours
:
Minutes
:
Seconds

 

Plug yourself into AI and don't miss a beat

 


Toronto AI is a social and collaborative hub to unite AI innovators of Toronto and surrounding areas. We explore AI technologies in digital art and music, healthcare, marketing, fintech, vr, robotics and more. Toronto AI was founded by Dave MacDonald and Patrick O'Mara.