Join our meetup, learn, connect, share, and get to know your Toronto AI community.
Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.
Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.
https://video.twimg.com/tweet_video/ECqxU2AU0AAkBwc.mp4
To enable wider use of this powerful deep learning architecture, we propose two new methods. The first, adaptive attention span is a way to make Transformer networks more efficient for longer sentences. With this method, we were able to increase the attention span of a Transformer to over 8,000 tokens without significantly increasing computation time or memory footprint. The second, all-attention layer is a way to simplify the model architecture of Transformer networks. Even with a much simpler architecture, our all-attention network matched the state-of-the-art performance of Transformer networks.
https://ai.facebook.com/blog/making-transformer-networks-simpler-and-more-efficient/
submitted by /u/BatmantoshReturns
[link] [comments]