[D] UMAP (dimensionality reduction algorithm)
Interested in dimensionality reduction? TSNE is so last century, these days it’s all about UMAP! Join Mihaela Curmei as she delivers a sublime presentation on UMAP!
https://www.youtube.com/watch?v=G9s3cE8TNZo
UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.
submitted by /u/timscarfe
[link] [comments]