Skip to main content

Blog

Learn About Our Meetup

5000+ Members

MEETUPS

LEARN, CONNECT, SHARE

Join our meetup, learn, connect, share, and get to know your Toronto AI community. 

JOB POSTINGS

INDEED POSTINGS

Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.

CONTACT

CONNECT WITH US

Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

[R] My first paper: Deep Learning for Cybersecurity

Hello everyone, I’m an engineering student and recently I was notified that my first paper was accepted in a regional conference of AI. I’m really happy about it and I want to share the preprint paper with you. Naturally, there is a lot of future work and improvements to do since it is my first research experience.

Detecting DNS Threats: A Deep Learning Model to Rule Them All

Abstract:

Domain Name Service is a central part of Internet regular operation. Such importance has made it a common target of different malicious behaviors such as the application of Domain Generation Algorithms (DGA) for command and control a group of infected computers or Tunneling techniques for bypassing system administrator restrictions. A common detection approach is based on training different models detecting DGA and Tunneling capable of performing a lexicographic discrimination of the domain names. However, since both DGA and Tunneling showed domain names with observable lexicographical differences with normal domains, it is reasonable to apply the same detection approach to both threats. In the present work, we propose a multi-class convolutional network (MC-CNN) capable of detecting both DNS threats. The resulting MC-CNN is able to detect correctly 99% of normal domains, 97% of DGA and 92% of Tunneling, with a False Positive Rate of 2.8%, 0.7% and 0.0015% respectively and the advantage of having 44% fewer trainable parameters than similar models applied to DNS threats detection.

Thanks for reading, have a nice day!

submitted by /u/QuitoMeister
[link] [comments]