Blog

Learn About Our Meetup

5000+ Members

MEETUPS

LEARN, CONNECT, SHARE

Join our meetup, learn, connect, share, and get to know your Toronto AI community. 

JOB POSTINGS

INDEED POSTINGS

Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.

CONTACT

CONNECT WITH US

Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

[R] Classifying nodes in a Knowledge Graph by inducing a decision tree of discriminative walks

While deep learning and embedding techniques are getting increasingly popular for tasks related to (knowledge) graphs, they often suffer from being not interpretable, which is key in critical domains such as health care. We propose a simple technique called KG Path Tree which is competitive to current state-of-the-art while being interpretable (we compare it to RDF2Vec and (Relational) Graph CNN).

A KG Path Tree is a single decision tree in which each internal node tests for the presence of a certain walk in a sample’s graph neighborhood. Our walks are of a specific form: a walk of length `l` starts with a root, followed by `l – 2` wildcards (`*`) and then a named entity. An example could be: `root -> * -> * -> * -> Ghent` which would match the walk `Gilles Vandewiele –> studiedAt –> Ghent University –> locatedIn –> Ghent` when classifying `Gilles Vandewiele`. The final decision tree can then be used for classification of unseen samples. The path from the root to the prediction can easily be displayed (local explanation) and the model can be inspected (global explanation).

All code can be found on Github.

submitted by /u/givdwiel
[link] [comments]

Next Meetup

 

Days
:
Hours
:
Minutes
:
Seconds

 

Plug yourself into AI and don't miss a beat

 


Toronto AI is a social and collaborative hub to unite AI innovators of Toronto and surrounding areas. We explore AI technologies in digital art and music, healthcare, marketing, fintech, vr, robotics and more. Toronto AI was founded by Dave MacDonald and Patrick O'Mara.