Skip to main content

Blog

Learn About Our Meetup

5000+ Members

MEETUPS

LEARN, CONNECT, SHARE

Join our meetup, learn, connect, share, and get to know your Toronto AI community. 

JOB POSTINGS

INDEED POSTINGS

Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.

CONTACT

CONNECT WITH US

Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

[Research] Brno Mobile OCR Dataset

https://medium.com/ai%C2%B3-theory-practice-business/new-ocr-dataset-for-mobile-devices-716e63967b4

We introduce the Brno Mobile OCR Dataset (BMOD) for document Optical Character Recognition from low-quality images captured by handheld devices. While OCR of high-quality scanned documents is a mature field where many commercial tools are available, and large datasets of text in the wild exist, no existing datasets can be used to develop and test document OCR methods robust to non-uniform lighting, image blur, strong noise, built-in denoising, sharpening, compression and other artifacts present in many photographs from mobile devices.

This dataset contains 2 113 unique pages from random scientific papers, which were photographed by multiple people using 23 different mobile devices. The resulting 19 725 photographs of various visual quality are accompanied by precise positions and text annotations of 500k text lines. We further provide an evaluation methodology, including an evaluation server and a test set with non-public annotations. We provide a state-of-the-art text recognition baseline build on convolutional and recurrent neural networks trained with Connectionist Temporal Classification loss. This baseline achieves 2 %, 22 % and 73 % word error rates on easy, medium and hard parts of the dataset, respectively, confirming that the dataset is challenging.

submitted by /u/cdossman
[link] [comments]