Join our meetup, learn, connect, share, and get to know your Toronto AI community.
Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.
Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.
Today, our cross-company team released https://github.com/kubeflow/kfserving!
KFServing provides a Kubernetes Custom Resource Definition for serving ML Models on arbitrary frameworks. It aims to solve 80% of model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX.
KFServing encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and Canary Rollouts to your ML deployments. It enables a simple, pluggable, and complete story for Mission Critical ML including inference, explainability, outlier detection, and prediction logging.
submitted by /u/yoshi_corporation
[link] [comments]