Join our meetup, learn, connect, share, and get to know your Toronto AI community.
Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.
Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.
So I understand that you don’t need to scale features for a decision tree, since it will just find the right place to split on anyway. Do outliers need to be handled though? Does it matter if I have some features that have a way higher variance within it compared to others? Lastly, for categorical variables, I have my observations labeled in one of 5 labels (this is a feature, not the target). Will it adversely affect the results if the labels are imbalanced? I have one label that makes up roughly 60% of all the observations. Should I try to relabel things so it’s a little more balanced (I can collapse some of the other labels) Btw these questions are for either classification or regression trees.
submitted by /u/mydogissnoring
[link] [comments]