Skip to main content

Blog

Learn About Our Meetup

5000+ Members

MEETUPS

LEARN, CONNECT, SHARE

Join our meetup, learn, connect, share, and get to know your Toronto AI community. 

JOB POSTINGS

INDEED POSTINGS

Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.

CONTACT

CONNECT WITH US

Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.

[R] Improving MAE against CCE under Label Noise

Why does MAE work much worse than CCE although it is noise-robust?

How to improve MAE against CCE to embrace noise-robustness and high generalisation performance?

To find an answer, please check and feel free to contact:

https://arxiv.org/abs/1903.12141 (Xinshao Wang, Elyor Kodirov, Yang Hua, Neil M. Robertson)

Abstract:

Label noise is inherent in many deep learning tasks when the training set becomes large. A typical approach to tackle noisy labels is using robust loss functions. Categorical cross entropy (CCE) is a successful loss function in many applications. However, CCE is also notorious for fitting samples with corrupted labels easily. In contrast, mean absolute error (MAE) is noise-tolerant theoretically, but it generally works much worse than CCE in practice. In this work, we have three main points. First, to explain why MAE generally performs much worse than CCE, we introduce a new understanding of them fundamentally by exposing their intrinsic sample weighting schemes from the perspective of every sample’s gradient magnitude with respect to logit vector. Consequently, we find that MAE’s differentiation degree over training examples is too small so that informative ones cannot contribute enough against the non-informative during training. Therefore, MAE generally underfits training data when noise rate is high. Second, based on our finding, we propose an improved MAE (IMAE), which inherits MAE’s good noise-robustness. Moreover, the differentiation degree over training data points is controllable so that IMAE addresses the underfitting problem of MAE. Third, the effectiveness of IMAE against CCE and MAE is evaluated empirically with extensive experiments, which focus on image classification under synthetic corrupted labels and video retrieval under real noisy labels.

submitted by /u/XinshaoWang
[link] [comments]