Join our meetup, learn, connect, share, and get to know your Toronto AI community.
Browse through the latest deep learning, ai, machine learning postings from Indeed for the GTA.
Are you looking to sponsor space, be a speaker, or volunteer, feel free to give us a shout.
Paper: https://arxiv.org/abs/1906.01083
Blog (with samples): https://sjvasquez.github.io/blog/melnet/
Many more samples: https://audio-samples.github.io/
Abstract: Capturing high-level structure in audio waveforms is challenging because a single second of audio spans tens of thousands of timesteps. While long-range dependencies are difficult to model directly in the time domain, we show that they can be more tractably modelled in two-dimensional time-frequency representations such as spectrograms. By leveraging this representational advantage, in conjunction with a highly expressive probabilistic model and a multiscale generation procedure, we design a model capable of generating high-fidelity audio samples which capture structure at timescales that time-domain models have yet to achieve. We apply our model to a variety of audio generation tasks, including unconditional speech generation, music generation, and text-to-speech synthesis—showing improvements over previous approaches in both density estimates and human judgments.
submitted by /u/sjv-
[link] [comments]